Abstract

Abstract Since the deterministic chaos appeared in the literature, we have observed a huge increase in interest in nonlinear dynamic systems theory among researchers, which has led to the creation of new methods of time series prediction, e.g. the largest Lyapunov exponent method and the nearest neighbor method. Real time series are usually disturbed by random noise, which can complicate the problem of forecasting of time series. Since the presence of noise in the data can significantly affect the quality of forecasts, the aim of the paper will be to evaluate the accuracy of predicting the time series filtered using the nearest neighbor method. The test will be conducted on the basis of selected financial time series.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.