Abstract

The transmembrane glycoprotein gp41 of human immunodeficiency virus has been proposed to form trimer-of-hairpin during virus-cell membrane fusion. To investigate its oligomerization propensity under soluble and membrane-mimic conditions, sodium salt of perfluorooctanoate (PFO) was applied. A recombinant gp41 ectodomain devoid of disulfide linkage was overexpressed in Escherichia coli and characterized by MS and circular dichroism spectropolarimetry in PFO solution in comparison to SDS. The helical content of this ectodomain in PFO is higher than that in SDS. Notably, PFO employed in PAGE clearly conduced to the formation of trimer under the optimized condition as visualized in the gel. In addition, the proteins expressed from the two mutants in the heptad repeat (HR) domains of gp41, I62P, and N126K, were also examined by the PFO-PAGE analysis for functional ramification of molecular organization. Remarkably, the I62P mutation completely abolished the gp41 trimer formation, whereas the N126K mutation resulted in a more stable trimer. The data suggested that PFO-PAGE analysis is appropriate for evaluating the effect of mutations on the trimerization of gp41 and other fusion proteins which may be implicated in the alteration of their fusogenicity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.