Abstract

Brain is by far the most complex organ in the body. It is involved in the regulation of cognitive, behavioral, and emotional activities. The organ is also a target for many diseases and disorders ranging from injuries to cancers and neurodegenerative diseases. Brain diseases are the main causes of disability and one of the leading causes of deaths. Several drugs that have shown potential in improving brain structure and functioning in animal models face many challenges including the delivery, specificity, and toxicity. For many years, researchers have been facing challenge of developing drugs that can cross the physical (blood–brain barrier), electrical, and chemical barriers of the brain and target the desired region with few adverse events. In recent years, nanotechnology emerged as an important technique for modifying and manipulating different objects at the molecular level to obtain desired features. The technique has proven to be useful in diagnosis as well as treatments of brain diseases and disorders by facilitating the delivery of drugs and improving their efficacy. As the subject is still hot, and new research findings are emerging, it is clear that nanotechnology could upgrade health care systems by providing easy and highly efficient diagnostic and treatment methods. In this review, we will focus on the application of nanotechnology in the diagnosis and treatment of brain diseases and disorders by illuminating the potential of nanoparticles.

Highlights

  • Brain diseases and disorders refer to a large group of health conditions affecting the brain including injuries, infections, tumors, and neurological disorders

  • NPs enhance the radiosensitivity of brain cells by promoting autophagy and hypoxia-induced oxidative stress, suggesting that this combination could be effective in treatment of brain diseases

  • A recent study reports that treatment of traumatic brain injury (TBI) rat model with cerium oxide (CeO2) NPs can significantly reduce brain damage by restoring the cognitive abilities and promoting antioxidant properties (Bailey et al, 2020)

Read more

Summary

Introduction

Brain diseases and disorders refer to a large group of health conditions affecting the brain including injuries, infections, tumors, and neurological disorders. It has been reported that the treatment of glioblastoma mouse model with a folate-targeted NP-mediated kringle 1 domain of hepatocyte growth factor gene can significantly induce antitumor effects and improve the sensitivity to ionizing radiation by promoting checkpoint kinase-1–induced cell cycle arrest and inhibiting the activation of tyrosine kinase receptors, ataxia telangiectasia mutated−checkpoint kinase-2 pathway, and Ki-67 expression (Figure 4; Zhang et al, 2018).

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.