Abstract

The development of catalysts for the water-gas shift (WGS) reaction is attracting attention because of the increased interest in on-site small-scale hydrogen production, which requires highly active and stable catalytic performance under severe conditions. In this study, metal–organic frameworks (MOF), which have been adopted in various fields because of their high surface area, diversity of assemblies, and uniform porosity, were applied to prepare Cu/CeO2 catalysts for the WGS reaction. MOF-derived CeO2 (MDC) was obtained from a Ce-BTC-based MOF calcined at different temperatures. Various techniques were used to investigate the physicochemical properties of the Cu/MDC catalysts. Important properties that determine the catalytic performance, such as crystallinity, surface area, Cu dispersion, reducibility, and oxygen storage capacity (OSC), were affected by the treatment temperature of MDC. Among the Cu/MDC catalysts, Cu/MDC prepared with MDC that was treated at 400 °C (Cu/MDC(400)) exhibited the highest CO conversion at reaction temperatures of 200–400 °C. In addition, Cu/MDC(400) maintained 80% of its initial CO conversion after 48 h on stream, even at a very high gas hourly specific velocity of 50,233 mL·gcat−1·h−1. This result was attributed to the high surface area, Cu dispersion, OSC, and easier reducibility of the Cu/MDC(400) catalyst compared to Cu supported on MDC calcined at other temperatures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call