Abstract

The mesh-free method is employed to implement the numerical simulation of the bending behavior of beams with the size effect. On the basis of the classical Bernoulli-Euler beam theory, two higher-order strain components are involved in the beam model. The intrinsic bulk length and the directional surface length components are introduced into the constitutive relationship to describe the size effect, and the variation of the total potential is provided. The moving-least square approximation is used to construct the shape function and its second- and third-order derivatives, and the choice of the scaling factor is discussed in detail. A mesh-free scheme is built to implement numerical simulation, in which the higher-order strains are directly approximated with the nodal components due to the higher-order continuity of the shape function. The convergence of method is illustrated in virtue of an example of the simply supported beam, and the effect of the intrinsic bulk length and the directional surface length components are studied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.