Abstract

Localized surface plasmons excited by Ag nanoparticles are introduced in the chemical etching process of silicon. A special crateriform structure with gradually varying radius is achieved by the surface electromagnetic field enhancement effect of localized surface plasmons resonance (LSPR). Theoretical analysis demonstrates that the formation kinetics of the crateriform structures conforms to the local electromagnetic field enhancement and forward scattering induced by LSPR. The LSPR assisted photocatalytic etching offers a potential approach for the preparation of the surface microstructures used in optoelectronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.