Abstract
With the rapid development of computer technology, data mining using association rules has been widely used in all walks of life. FP-Growth algorithm is an association rule algorithm. It does not need to generate candidates, so it has practical value for the study of disease complications. However, it is inefficient and prone to spillover due to its large scale medical data. This paper proposes an improved algorithm based on the FP-Growth algorithm, which sets the minimum support threshold and deletes infrequent item sets to improve the operation efficiency. Experimental results show that this algorithm accelerates the speed of data mining and improves the processing efficiency in the medical data environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: DEStech Transactions on Computer Science and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.