Abstract

Four selected hydroxy polycyclic aromatic hydrocarbons (OH-PAHs), 2-hydroxy-naphthalene (2-OH-NPH), 1-hydroxy-phenanthrene (1-OH-PHE), 1-hydroxy-pyrene (1-OH-PYR) and 3-hydroxy-benzo[a]pyrene (3-OH-BaP) have been analysed in two certified fish bile reference materials (CRMs) for exposure monitoring of PAHs in the aquatic environment. The two materials, BCR 720 and BCR 721, consist of bile from fish exposed to contaminated sediment and dispersed crude oil, respectively. Both bile samples have been analysed by two different analytical techniques, gas chromatography-mass spectrometry (GC-MS) and high performance liquid chromatography-fluorescence detection (HPLC-F), and the separation performance, detection limits, recoveries and reproducibility for the four target compounds were evaluated. HPLC-F requires a simple sample preparation and the separation capacity is adequate for quantification of 1-OH-PYR and 3-OH-BaP. Detection limits are excellent for 1-OH-PYR (6 pg injected) and 3-OH-BaP (3 pg injected) and generally improved with increasing molecular size. Recoveries ranged from 48 to 99% for the four selected compounds, depending on compound and concentration. Sample preparation prior to GC-MS analysis was more demanding, as reflected by the obtained recoveries for 2-OH-NPH, 1-OH-PHE and 1-OH-PYR (35 to 61%). The sensitivity improved with decreasing molecular size, 2-OH-NPH (1.2 pg injected), 1-OH-PHE (2.4 pg injected) and 1-OH-PYR (6 pg injected). Because of the superior separation power of GC and the extra selectivity of MS detection, GC-MS was the method of choice for the determination of 2-OH-NPH and 1-OH-PHE in both CRMs. In fish bile samples these two compounds are more likely to suffer from chromatographic overlap, and HPLC-F was not sufficiently selective. Determination of 1-OH-PYR was performed with success by both methods, but HPLC-F would be preferred because of the simpler and less time-consuming sample preparation. Detectable concentrations of 3-OH-BaP were present in BCR 720 and could only be determined by HPLC-F. The present work aims to present HPLC-F and GC-MS as complementary methods for the quantitative analysis of OH-PAHs in fish bile.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.