Abstract

The human adenovirus 2 (Ad2) transformation genes are located in early region E1a (map position (mp) 1.3–4.5) and E1b (mp 4.6–11.2) on the linear duplex Ad2 DNA genome of M r 23 × 10 6 (viral DNA is divided into 100 map units). E1b codes for three major proteins of apparent molecular weights 53,000 (53K), 19K, and 20K; smaller quantities of 21K, 22K, and 23K proteins that are related to 53K are also synthesized in Ad2-infected cells. Because the resolution and purification of these Ad2 candidate transformation proteins proved very difficult by conventional protein purification methods, the applicability of high-performance liquid chromatography (HPLC) methodology was examined. Starting with a crude cytoplasmic S100 fraction of Ad2-infected human cells, the resolution of the Ad2 E1b-coded 19K, 20K, 21K, 22K, and 23K proteins by reverse-phase HPLC using a C 8 column and a linear 0–60% 1-propanol gradient in 0.5 m pyridine formate was achieved, E1b proteins purified under these conditions retained their immunological reactivity. By anion-exchange HPLC using a linear 10 m m to 1 m NaCl gradient in 10 m m 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid buffer, pH 7.6, the same five Ad2 E1b-coded 19K–23K proteins were separated, with improved resolution of the 19K protein. Based on these findings, protocols for the extensive purification of the E1b-19K and E1b-20K proteins have been developed. These results illustrate the potential of HPLC methodology for the rapid purification of biologically interesting proteins from complex cellular mixtures of proteins.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call