Abstract

Fusarium oxysporum f. sp. cubense ( Foc) is responsible for fusarium wilt of bananas. The pathogen consists of several variants that are divided into three races and 21 vegetative compatibility groups (VCGs). Several DNA-based techniques have previously been used to analyse the worldwide population of Foc, sometimes yielding results that were not always consistent. In this study, the high-resolution genotyping method of AFLP is introduced as a potentially effective molecular tool to investigate diversity in Foc at a genome-wide level. The population selected for this study included Foc isolates representing different VCGs and races, isolates of F. oxysporum f. sp. dianthi, a putatively non-pathogenic biological control strain F. oxysporum (Fo47), and F. circinatum. High-throughput AFLP analysis was attained using five different infrared dye-labelled primer combinations using a two-dye model 4200s LI-COR automated DNA analyser. An average of approx. 100 polymorphic loci were scored for each primer pair using the SAGA MX automated AFLP analysis software. Data generated from five primer pair combinations were combined and subjected to distance analysis, which included the use of neighbour-joining and a bootstrap of 1000 replicates. A tree inferred from AFLP distance analysis revealed the polyphyletic nature of the Foc isolates, and seven genotypic groups could be identified. The results indicate that AFLP is a powerful tool to perform detailed analysis of genetic diversity in the banana pathogen Foc.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call