Abstract

Interspecies transmission of pathogens may result in the emergence of new infectious diseases in humans as well as in domestic and wild animals. Genomics tools such as high-throughput sequencing, mRNA expression profiling, and microarray-based analysis of single nucleotide polymorphisms are providing unprecedented ways to analyze the diversity of the genomes of emerging pathogens as well as the molecular basis of the host response to them. By comparing and contrasting the outcomes of an emerging infection with those of closely related pathogens in different but related host species, we can further delineate the various host pathways determining the outcome of zoonotic transmission and adaptation to the newly invaded species. The ultimate challenge is to link pathogen and host genomics data with biological outcomes of zoonotic transmission and to translate the integrated data into novel intervention strategies that eventually will allow the effective control of newly emerging infectious diseases.

Highlights

  • Interspecies transmission of pathogens may result in the emergence of new infectious diseases in humans as well as in domestic and wild animals

  • Most of the well-known human viruses persist in the population for a relatively long time, and coevolution of the virus and its human host has resulted in an equilibrium characterized by coexistence, often in the absence of a measurable disease burden

  • Several outbreaks of infectious diseases in humans linked to such an initial zoonotic transmission have highlighted this problem

Read more

Summary

Emerging Zoonotic Viruses

Most of the well-known human viruses persist in the population for a relatively long time, and coevolution of the virus and its human host has resulted in an equilibrium characterized by coexistence, often in the absence of a measurable disease burden. The introduction into humans of HIV-1 and HIV-2 (the lentiviruses that cause AIDS), as well as other primate viruses, such as monkeypox virus and Herpesvirus simiae, provide dramatic examples of this type of transmission. Other viruses, such as influenza A viruses and severe acute respiratory syndrome coronavirus (SARS-CoV), may need multiple genetic changes to adapt successfully to humans as a new host species; these changes might include differential receptor usage, enhanced replication, evasion of innate and adaptive host immune defenses, and/or increased efficiency of transmission. Understanding the complex interactions between the invading pathogen on the one hand and the new host on the other as they progress toward a new host– pathogen equilibrium is a major challenge that differs substantially for each successful interspecies transmission and subsequent spread of the virus

Genomics of Zoonotic Viruses and Their Hosts
Influenza Virus
Findings
Challenges for the Future

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.