Abstract
AbstractHistorically, finite-element (FE) analyses of water-filled transport flasks and their payloads have been carried out assuming a dry environment, mainly due to lack of robust fluid structure interaction (FSI) modelling techniques. Recent years have seen significant improvements in FSI techniques. These FSI techniques have been used to investigate the effects of assuming a wet environment for the regulatory drop test within a recent Rolls-Royce Naval Marine licence renewal application. This paper will present the FSI capabilities available within various FE codes. The required structural aspects of the FE codes will also be discussed, in particular material models, as these also influence the final code selection. Two explicit dynamic FE codes were finally identified, LS-DYNA, which was used in the extant dry analyses, and RADIOSS, which was used to provide additional confidence in the FSI calculations. Fluid flow and pressure vary significantly during an impact and the effects on the contents becom...
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Packaging, Transport, Storage & Security of Radioactive Material
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.