Abstract

The possibility has been investigated of selectively spin-labelling the cysteine residues of histone H3 in chromatin and probing by ESR conformational changes affecting the labelled area as the molecular environment is altered. About 90% of bound labels are attached to the thiol groups and are strongly immobilized in deep crevices. The remaining labels are bound to amino groups mainly on histone H1, giving rise to a more mobile component in the chromatin spectrum. No conformational changes involving the labelled cysteines could be detected as the histones were dissociated stepwise from the complex by NaCl, but treatment with urea led to a cooperative increase in mobility, indicating that the hydrophobic region around the cysteine residues is folded in a compact tertiary structure to which histone H4 may be bound in the native complex, but which is not affected by dissociation of the H3•H4 unit from the DNA. In addition, chymotryptic disruption of the chromatin has been followed and an estimate made from the rotational correlation times of the size and origin of the digestion fragment carrying spin-labelled cysteine 110.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.