Abstract

Rapid changes in the apparent diffusion coefficient of water following brain ischemia have been extensively studied using echo planar diffusion imaging at low fields (2.0 T). There is a desire to perform these studies at higher fields (> 3.0 T) where the benefits of improved signal-to-noise can be exploited. Unfortunately, EPI diffusion is technically difficult to implement at high fields because of large magnetic susceptibility effects. This article demonstrates the feasibility of employing a line-scan diffusion protocol for ADCw measurements in stroke. The technique was applied on a 4.0 T system to monitor the decline in ADCw following the induction of focal cerebral ischemia in rat. ADCw data were acquired every 15 s with 10 b-values or every 22.5 s with 15 b-values, with a cubic spatial resolution of 1.5 mm. The results demonstrate that estimates of ADCw can be acquired with coefficients of variation under 3.0%, and with a combination of spatial and temporal resolution comparable to that previously reported for EPI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.