Abstract

Mitochondria-associated membrane (MAM) has been studied as a novel target for explaining the mechanisms underlying the changes in cellular function and the process of multiple diseases. This structure is a complex of proteins, it tethers mitochondria to the endoplasmic/sarcoplasmic reticulum (ER/SR) and mediates the crosstalk of ions, lipids and metabolites between the two organelles. Different component proteins play distinctive ways in influencing the structure of MAM or the cellular signal transduction. Mitochondria and ER are the hubs of cellular bioenergetics and protein homeostasis respectively, MAM was supposed to play both physiological and pathological roles in regulating the function of either the two organelles and cells. The mitochondria-associated membrane is a highly dynamic structure and could be disrupted or remodelled within several minutes. Up to now, not all component proteins of the MAM complex have been revealed. Several biochemical and imaging approaches have been used to measure the changes in the structure or the number of MAMs, but they come with their issues. For distinct research aims, particular techniques were used based on their applicabilities, the research platforms and technical defects. This review briefly summarized the current biotechnologies for detecting MAM, and analyzed their limitations, aiming to assist further research in selecting appropriate methods based on actual situations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.