Abstract

This research was undertaken to examine a new method for assessing the performance of ice hockey helmets. It has been proposed that the current centric impact standards for ice hockey helmets, measuring peak linear acceleration, have effectively eliminated traumatic head injuries in the sport, but that angular acceleration and brain tissue deformation metrics are more sensitive to the conditions associated with concussive injuries, which continue to be a common injury. Ice hockey helmets were impacted using both centric and non-centric impact protocols at 7.5 m/s using a linear impactor. Dynamic impact responses and brain tissue deformations from the helmeted centric and non-centric head form impacts were assessed with respect to proposed concussive injury thresholds from the literature. The results of the helmet impacts showed that the method used was sensitive enough to distinguish differences in performance between helmet models. The results have shown that peak linear acceleration yielded low magnitudes of response to an impact, but peak angular acceleration and brain deformation metrics consistently reported higher magnitudes, reflecting a high risk for incurring a mild traumatic brain injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.