Abstract

AbstractAccompanying the construction of inland navigation projects is the generation of high slopes, whose stability has always been an important safety issue of great concern during the process. The safety incidents involving high slope instability often cause huge economic losses and even casualties. Therefore, it is of particular importance to monitor high slopes, to identify safety hazards and to predict the occurrence of safety accidents in advance through the tendency of changing. Once the project is completed, effective monitoring is also essential during the operation of the locks in order to avoid safety accidents such as the collapse of ship locks and other main structures.Based on the BeiDou high-precision positioning technology, this paper investigates the application of the automated displacement monitoring system in the construction and operation of navigation projects. The system mainly consists of sensor subsystem, data transmission subsystem, data processing and control subsystem as well as other auxiliary support subsystems. The system collects static satellite data from fiducial points and monitoring points, carries out baseline vector solution to realize millimeter-level displacement monitoring, and effectively monitors high slope displacement during construction according to the storage, management, query, statistics and analysis of the monitoring data, as well as timely detects abnormal situations about the displacement. When there is slope instability, early warning will be issued by grading so that measures could be implemented in advance to avoid safety accidents. When applied during the operation of ship locks, it can monitor the displacement of the lock chamber’s main work persistently to ensure its normal operation.This paper takes the construction site of certain ship lock project as the object and sets up 1 fiducial point and 10 monitoring points. The real-time displacement monitoring of the site’s high slopes throughout the construction period is carried out, the main functions of the monitoring system are tested and the monitoring data and results are briefly analyzed. After the completion of the project, the monitoring system is applied during the operation of the ship lock and the deformation of the lock chamber is constantly monitored and analyzed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.