Abstract

Cartilage defect caused by disease or trauma remains a challenge for surgeons, owning to the limited healing capacity of cartilage tissues. Cartilage tissue engineering provides a novel approach to address this issue, and appears promising for patients with cartilage defects. The cell scaffold, as one of the three key elements of tissue engineering, plays an important role in cartilage tissue engineering. Platelet‑rich plasma (PRP), which is a fraction of the plasma containing multiple growth factors, has become a major research focus in the context of its use as a bioactive scaffold for tissue engineering. Therefore, we investigated the value of using PRP scaffolds combined with chondrocytes in cartilage tissue engineering. In this study, we examined the levels of growth factors in PRP, and the effects of PRP on cell proliferation and matrix synthesis in rabbit chondrocytes cultured in PRP. Short-term in vitro culture followed by long‑term in vivo implantation was performed to evaluate the chondrogenesis of neocartilage in vivo. The results show that PRP may provide a suitable environment for the proliferation and maturation of chondrocytes, and can be used as a promising bioactive scaffold for cartilage regeneration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.