Abstract
Additive manufacturing is an option for the fabrication of heat exchangers for thermoacoustic applications. In thermoacoustic devices, heat exchangers are placed in oscillatory flow. A careful consideration of heat exchanger geometries examines the application of methodologies to optimise heat transfer and the temperature gradient. Additive manufacturing is proposed as an alternative fabrication technique that can overcome the current limitations of conventional fabrication machining. Six identical crossflow heat exchangers were made and tested, three from stainless steel and three from aluminium. The oscillatory flow moves back and forth through circular cross-section channels, and water flows in channels perpendicular to them. Heat transfer and temperature gradients were investigated at different drive ratios and mean pressures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.