Abstract

In a Cassegrain optical system, the surface precision of the primary mirror is an important factor in the quality of the image. The design of a lightweight primary mirror with a high-quality optical surface is crucial. In this thesis, an integrated mirror light engine design optimization process is proposed for an aviation optoelectronic device. It is based on the Kriging surrogate model and nests the topology optimization algorithm, which constructs the mirror RMS value response surface and obtains the dominant relationship between mirror structure and surface accuracy. The optimal surface figure lightweight structure of the mirror is obtained by optimizing the surrogate model with an additive criterion and multi-objective optimization analysis. The root mean square value (RMS) of the corresponding primary mirror is 10.41 nm, which is better than 1/40 λ (λ = 632.8 nm). This meets the optical design specifications. The optimal primary mirror structure is analyzed by using the finite element method, which verifies the precision of the Kriging surrogate model. It has an error of 0.28%. The kinetic analysis of the primary mirror shows that the primary mirror does not yield to plastic deformation or even failure under a three-way 20 g acceleration load. This meets the environmental suitability requirements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call