Abstract

In near-field remote sensing, noncontact methods (radars) that measure stage and surface water velocity have the potential to supplement traditional bridge scour monitoring tools because they are safer to access and are less likely to be damaged compared with in-stream sensors. The objective of this study was to evaluate the use of radars for monitoring the hydraulic conditions that contribute to bridge–pier scour in gravel-bed channels. Measurements collected with a radar were also leveraged along with minimal field measurements to evaluate whether time-integrated stream power per unit area (Ω) was correlated with observed scour depth at a scour-critical bridge in Colorado. The results of this study showed that (1) there was close agreement between radar-based and U.S. Geological Survey streamgage-based measurements of stage and discharge, indicating that radars may be viable tools for monitoring flow conditions that lead to bridge pier scour; (2) Ω and pier scour depth were correlated, indicating that radar-derived Ω measurements may be used to estimate scour depth in real time and predict scour depth based on the measured trajectory of Ω. The approach presented in this study is intended to supplement, rather than replace, existing high-fidelity scour monitoring techniques and provide data quickly in information-poor areas.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.