Abstract
The foundation of energy-efficient architectural design is modeling heating and cooling loads (HLs and CLs), which defines the heating and cooling apparatus constraints necessary to maintain a suitable interior air environment. It is possible that analytical models for energy-efficient buildings might offer an accurate evaluation of the influence that various building designs would have. The implementation of these instruments, however, might be a process that requires a significant amount of manual labor, a significant amount of time, and is reliant on user experiences. In light of this, the authors of this paper present two unique methods for estimating the CL of residential structures in the form of complex mathematical concepts. These methodologies include an evolutionary web algorithm (EWA), biogeography-based optimization (BBO), and a hybridization of an adaptive neuro-fuzzy interface system (ANFIS), namely BBO-ANFIS and EWA-ANFIS. The findings initiated from each of the suggested models are evaluated with the help of various performance metrics. Moreover, it is possible to determine which model is the most effective by comparing their coefficient of determination (R2 ) and its root mean square error (RMSE) to each other. In mapping non-linear connections between input and output variables, the observed findings showed that the models used have a great capability. In addition, the results showed that BBO-ANFIS was the superior forecasting model out of the two provided models, with the lowest value of RMSE and the greatest value of R2 (RMSE = 0.10731 and 0.11282 and R2 = 0.97776 and 0.97552 for training and testing phases, respectively). The EWA-ANFIS also demonstrated RMSE and R2 values of 0.18682 and 0.17681 and 0.93096 and 0.93874 for the training and testing phases, respectively. Finally, this study has proven that ANN is a powerful tool and will be useful for predicting the CL in residential buildings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.