Abstract

We present an analytical model of aeolian sand transport. The model quantifies the momentum transfer from the wind to the transported sand by providing expressions for the thickness of the saltation layer and the apparent surface roughness. These expressions are derived from basic physical principles and a small number of assumptions. The model further predicts the sand transport rate (mass flux) and the impact threshold (the smallest value of the wind shear velocity at which saltation can be sustained). We show that, in contrast to previous studies, the present model's predictions are in very good agreement with a range of experiments, as well as with numerical simulations of aeolian saltation. Because of its physical basis, we anticipate that our model will find application in studies of aeolian sand transport on both Earth and Mars.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.