Abstract

Difference schemes for hyperbolic systems of conservation laws occasionally converge to an unphysical weak solution, i.e. a weak solution containing discontinuities for which the entropy condition is violated. These unphysical discontinuities, when they exist as solutions of the difference scheme, tend to exhibit a surprising stability under perturbations. We point out here that this can be explained by an energy inequality, which is valid for the discrete approximation but which is not valid as applied to the differential equation itself. In spite of this difficulty, many simple difference schemes are highly successful at converging to the physically correct weak solution. A mechanism for this is given; we show that for shocks of moderate strength, there are numerous quadratic forms in the dependent variables which can serve effectively as entropy functions, i.e. for which an inequality exists determining the physically correct weak solution. It is shown how the limits of the solutions of a difference scheme will often necessarily satisfy such an inequality; as they are generally weak solutions of the given system, they must thus be the correct weak solutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.