Abstract

Suboptimal nitrogen nutrition, leaf aging, and prior exposure to water stress all increased stomatal closure in excised cotton (Gossypium hirsutum L.) leaves supplied abscisic acid (ABA) through the transpiration stream. The effects of water stress and N stress were partially reversed by simultaneous application of kinetin (N(6)-furfurylaminopurine) with the ABA, but the effect of leaf aging was not. These enhanced responses to ABA could have resulted either from altered rates of ABA release from symplast to apoplast, or from some "post-release" effect involving ABA transport to, or detection by, the guard cells. Excised leaves were preloaded with [(14)C]ABA and subjected to overpressures in a pressure chamber to isolate apoplastic solutes in the exudate. Small quantities of (14)C were released into the exudate, with the amount increasing greatly with increasing pressure. Over the range of pressures from 1 to 2.5 MPa, ABA in the exudate contained about 70% of the total (14)C, and a compound co-chromatographing with phaseic acid contained over half of the remainder. At a low balancing pressure (1 MPa), release of (14)C into the exudate was increased by N stress, prior water stress, and leaf aging. Kinetin did not affect (14)C release in leaves of any age, N status, or water status. Distribution of ABA between pools can account in part for the effects of water stress, N stress, and leaf age on stomatal behavior, but in the cases of water stress and N stress there are additional kinetinreversible effects, presumably at the guard cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call