Abstract
Apical potassium channels are crucial for thick ascending limb (TAL) of Henle's loop transport function. The ROMK (KNCJ1) gene encodes a 30-pS K channel whose loss of function causes the reduced NaCl reabsorption in the TAL associated with Type 2 Bartter's syndrome. In contrast, the molecular basis of a functionally ROMK-related 70-pS K channel is still unclear. The aim of this study was to highlight new specific channel properties that may give insights on its molecular identity. Using the patch-clamp technique on the apical membrane of mouse split-open TAL tubules, we observed that 70-pS K channel activity, but not ROMK channel activity, increases with the internal Na+ and Cl- concentrations, with relative 50 % effective concentrations (EC50) and Hill coefficients (nH) of 40.6 mM (SD 1.65) and 2.4 (SD 0.28) for Na+, and of 29.3 mM (SD 2.35) and 2.2 (SD 0.39) for Cl-. Conversely, 70-pS K channel activity was inhibited by internal K+ with a relative EC50 of 64 mM (SD 13.5) and a nH of 3.5 (SD 2.3), and by internal NH4+ and Ca2+. The reevaluation of channel conductive properties revealed an actual inward conductance of ~ 170 pS, with multiple subconductance levels and an inward rectification, and a substantial permeability to NH4+ ( = 0.2). We conclude that the apical 70-pS K channel in TAL cells is a large-conductance Na+- and Cl--activated potassium channel functionally resembling a KNa1.1 channel and propose that ROMK determines its functional expression possibly at the level of channel protein synthesis or trafficking.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.