Abstract

Based on the decision of representatives from the West African region and feedback from locals in Togo, an advanced continuous-feed, forced-draft, biomass cookstove named “Apeli” was developed. The stove was tested in modified ISO measurements based on the ISO 19867-1:2018 standard. This included a long shutdown operation using wood pellets and short shutdown operations using wood pellets, bamboo pellets, wheat straw pellets and palm kernel shells. Due to the fast shutdown capability, the short shutdown was chosen for more realistic results using this stove type. For cold start and long shutdown operation using wood pellets, the thermal efficiency is determined as 44.1% at a 1116 W power output by emitting 0.272 g CO and 17.2 mg PM 2.5 per MJd at high load. At low load, the efficiency is 38.0% at a 526 W power output by emitting 1.1 g CO and 45.1 mg PM 2.5 per MJd. Due to a misinterpretation of the standard, the burnout duration of the tests with long shutdown is approx. 1.5 min shorter than required. Using a worst-case approximation, values for a theoretical ISO-conforming measurement were calculated and rated according to the ISO 19867-3:2018 standard. The results showed that the Apeli would correspond to Tier 4 for efficiency and PM 2.5 as well as Tier 5 for CO in high-power operation using wood pellets. The use of alternative fuels is possible, but can lead to higher emissions compared to the use of wood pellets. With regard to possibly using the biochar produced in the process for soil application, it has been demonstrated that the PAH content ensures European BioChar-Agro-Organic limitations. The first results of a field test in Togo have shown that operating and feeding the stove by the target group is easy. The required permanent presence of the user during cooking with this stove seems to have a limited influence on acceptance, which seems to primarily depend on the age of the user. Moreover, it can be concluded that the Apeli has good potential to be mass-produced locally at low costs with a reliable supply of spare parts. This can contribute not only to improving clean cooking, but also to fighting air pollution and deforestation caused by solid fuel burning due to the reduced consumption of resources in the form of fuel, especially wood.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call