Abstract
Respiratory syncytial virus (RSV) infection is one of the three most common causes of death in the infants, pre-schoolers, immunocompromised patients and elderly individuals due to many complications and lack of specific treatment. During RSV infection, the fusion protein (F protein) mediates the fusion of the virus envelope with the host cell membrane. Therefore, the F protein is an effective target for viral inhibition. We identified potential small-molecule inhibitors against RSV-F protein for the treatment of RSV infection using virtual screening and molecular dynamics (MD) simulations. The CCK8 assay was used to determine the cytotoxicity and quantitative RT-PCR and indirect fluorescence assay (IFA) were used to determine the viral replication and RSV-induced inflammation in vitro. An RSV-infected mouse model was established, and viral replication was assayed using real-time quantitative PCR and IFA. Virus-induced complications were also examined using histopathological analysis, airway resistance and the levels of IL-1β, IL-6 and TNF-α. The top three potential inhibitors against the RSV-F protein were screened from the FDA-approved drug database. Z65, Z85 and Z74 significantly inhibited viral replication and RSV-induced inflammation. They also significantly alleviated RSV infection and RSV-induced complications in vivo. Z65 and Z85 had no cytotoxicity and better anti-RSV effects than Z74. Z65 and Z85 may be suitable candidates for the treatment of RSV and serve as the basis for the development of new drugs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.