Abstract

AbstractThe antitumor ether lipid ET-18-OCH3 promotes apoptosis in tumor cells through intracellular activation of Fas/CD95. Results of this study showed that ET-18-OCH3 induces cocapping of Fas and membrane rafts, specialized plasma membrane regions involved in signaling, before the onset of apoptosis in human leukemic cells. Patches of membrane rafts accumulated Fas clusters in leukemic cells treated with ET-18-OCH3. Sucrose gradient centrifugation of Triton X-100 cell lysates showed that Fas translocated into membrane rafts following ET-18-OCH3 treatment of T-leukemic Jurkat cells. Disruption of membrane raft integrity by methyl-β-cyclodextrin or filipin inhibited ET-18-OCH3-induced apoptosis in leukemic primary cells and cell lines. Fas clustering was also inhibited by methyl-β-cyclodextrin. These data indicate that ET-18-OCH3 reorganizes membrane rafts to trigger apoptosis in human leukemic cells, and that Fas coaggregation with membrane rafts is required for ET-18-OCH3–induced apoptosis. This translocation of Fas into membrane rafts may provide a mechanism for amplifying Fas signaling by reorganization of membrane microdomains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.