Abstract

To establish an efficient cell-culture system for adoptive immunotherapy, we attempted to use lipopolysaccharide(LPS)-activated B cells (LPS blasts) as costimulatory-signal-providing cells in the in vitro induction of antitumor effector cells. Both normal and tumor-draining lymph node cells were efficiently activated by both anti-CD3 monoclonal antibody (mAb) and LPS blasts, and subsequently expanded by a low dose of interleukin-2 (IL-2; anti-CD3 mAb and LPS blasts/IL-2). The expanded cells were predominantly CD8+ T cells and showed a low level of tumor-specific cytotoxic T lymphocyte (CTL) activity. The adoptive transfer of B16-melanoma-draining lymph node cells expanded by anti-CD3 mAb and LPS blasts/IL-2 showed significant antitumor effect against the established metastases of B16 in combination with intraperitoneal injections of IL-2. This treatment cured all B16-bearing mice. In addition, these mice also showed tumor-specific protective immunity against B16 at the rechallenge. Considering that activated B cells express several kinds of costimulatory molecules, these findings thus indicate an efficacy of costimulation that is derived from activated B cells for the in vitro induction of tumor-specific CTL, in co-operation with anti-CD3 mAb. The culture system presented here may thus be therapeutically useful, providing potent effectors for adoptive immunotherapy against various types of cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.