Abstract
2-(4-Amino-3-methylphenyl)-5-fluoro-benzothiazole (5F 203) potently inhibits MCF-7 breast cancer cell growth in part by activating the aryl hydrocarbon receptor (AhR) signaling pathway. Ligands for the AhR (i.e. dioxin) have also been shown to modulate the NF-kappaB signaling cascade, affecting physiological processes such as cellular immunity, inflammation, proliferation and survival. The objective of this study was to investigate the effect of 5F 203 treatment on the NF-kappaB signaling pathway in breast cancer cells. Exposure of MCF-7 cells to 5F 203 increased protein-DNA complex formation on the NF-kappaB-responsive element as determined by electrophoretic mobility shift assay, but this effect was eliminated in MDA-MB-435 cells, which are resistant to the antiproliferative effects of 5F 203. An increase in NF-kappaB-dependent transcriptional activity was confirmed by a significant increase in NF-kappaB-dependent reporter activity in sensitive MCF-7 cells, which was absent in resistant MDA-MB-435 cells and AhR-deficient subclones of MCF-7 cells. Inhibition of NF-kappaB activation enhanced the increase in xenobiotic response element-dependent reporter activity in MCF-7 cells when treated with 5F 203. The drug candidate 5F 203 also induced mRNA levels of IL-6, an NF-kappaB-responsive gene, in MCF-7 cells, but not in MDA-MB-435 cells, as determined by quantitative RT-PCR. These findings suggest that 5F 203 activation of the NF-kappaB signaling cascade may contribute to 5F 203-mediated anticancer activity in human breast cancer MCF-7 cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.