Abstract

Heparin has been proposed to conformationally activate the serpin, antithrombin, by making the reactive center loop P1 arginine residue accessible to proteinases. To evaluate this proposal, we determined the effect of mutating the P1 arginine on antithrombin's specificity for target and nontarget proteinases in both native and heparin-activated states of the serpin. As expected, mutation of the P1 arginine to tryptophan, histidine, leucine, and methionine converted the specificity of antithrombin from a trypsin inhibitor (k(assoc) = 2 x 10(5) M(-1) s(-1)) to a chymotrypsin inhibitor (k(assoc) = 10(3)-10(5) M(-1) s(-1)). However, heparin pentasaccharide activation increased the reactivity of the P1 variants with chymotrypsin or of the wild-type inhibitor with trypsin only 2-6-fold, implying that the P1 residue had similar accessibilities to these proteinases in native and activated states. Mutation of the P1 arginine greatly reduced k(assoc) for antithrombin inhibition of thrombin and factor Xa from 40- to 5000-fold, but heparin normally accelerated the reactions of the variant antithrombins with these enzymes to make them reasonably efficient inhibitors (k(assoc) = 10(3)-10(4) M(-1) s(-1)). Fluorescence difference spectra of wild-type and P1 tryptophan variant antithrombins showed that the P1 tryptophan exhibited fluorescence properties characteristic of a solvent-exposed residue which were insignificantly affected by heparin activation. Moreover, all P1 variant antithrombins bound heparin with approximately 2-3-fold higher affinities than the wild type. These findings are consistent with the P1 mutations disrupting a P1 arginine-serpin body interaction which stabilizes the native low-heparin affinity conformation, but suggest that this interaction is of low energy and unlikely to limit the accessibility of the P1 residue. Together, these findings suggest that the P1 arginine residue is similarly accessible to proteinases in both native and heparin-activated states of the serpin and contributes similarly to the specificity of antithrombin for thrombin and factor Xa in the two serpin conformational states. Consequently, determinants other than the P1 residue are responsible for enhancing the specificity of antithrombin for the two proteinases when activated by heparin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call