Abstract

Staphylococcus aureus (SA) colonizes the vast majority of patients with atopic dermatitis (AD). Its resistance to antibiotics and ability to form biofilms are the main origins of therapeutic complications. Endogenous antimicrobial peptides (AMPs) exhibit strong activity against SA, including antibiotic resistant strains as well as bacteria existing in biofilm form. The purpose of the present work was to determine the antistaphylococcal activity of two amphibian peptides against SA isolated from patients with AD. The AMPs demonstrated permanent activity towards strains exposed to sublethal concentrations of the compounds and significantly stronger antibiofilm activity in comparison to that of conventional antimicrobials. The results suggest the potential application of amphibian AMPs as promising antistaphylococcal agents for the management of skin infections.

Highlights

  • The skin serves as the first line of defense against infection by reducing microbial adherence and invasion [1]

  • The antimicrobial peptides (AMPs) exhibited activity against all Staphylococcus aureus (SA) strains isolated from patients with atopic dermatitis (AD), while several strains were resistant to conventional antistaphylococcal agents

  • The activity of antibiotics against the majority of the isolates in their planktonic form was significantly higher in comparison to that of the AMPs

Read more

Summary

Introduction

The skin serves as the first line of defense against infection by reducing microbial adherence and invasion [1]. In atopic dermatitis (AD), a chronic, relapsing inflammatory skin disease, the protective epidermal barrier is significantly compromised [2,3]. Both the etiology and pathogenesis of AD are very complex in nature. SA is the major cause of skin and soft tissue infections which, despite the continuous development of medicines, are still difficult to treat [5,6]. Therapeutic problems are caused by the development of strains with reduced susceptibility to many antibiotics, such as methicillin-resistant SA (MRSA) [7]

Objectives
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call