Abstract
BackgroundSchistosomiasis chemotherapy is largely based on praziquantel (PZQ). Although PZQ is very safe and tolerable, it does not prevent reinfection and emerging resistance is a primary concern. Recent studies have shown that the targeting of epigenetic machinery in Schistosoma mansoni may result in severe alterations in parasite development, leading to death. This new route for drug discovery in schistosomiasis has focused on classes of histone deacetylases (HDACs) and histone acetyltransferases (HATs) as epigenetic drug targets. Schistosoma histone demethylases also seem to be important in the transition of cercariae into schistosomula, as well as sexual differentiation in adult worms.MethodsThe Target-Pathogen database and molecular docking assays were used to prioritize the druggability of S. mansoni histone demethylases. The transcription profile of Smp_03400 was re-analyzed using available databases. The effect of GSK-J4 inhibitor in schistosomula and adult worms’ motility/viability/oviposition was assessed by in vitro assays. Ultrastructural analysis was performed on adult worms exposed to GSK-J4 by scanning electron microscopy, while internal structures and muscle fiber integrity was investigated by confocal microscopy after Langeronʼs carmine or phalloidin staining.ResultsThe present evaluation of the potential druggability of 14 annotated S. mansoni demethylase enzymes identified the S. mansoni ortholog of human KDM6A/UTX (Smp_034000) as the most suitable druggable target. In silico analysis and molecular modeling indicated the potential for cofactor displacement by the chemical probe GSK-J4. Our re-analysis of transcriptomic data revealed that Smp_034000 expression peaks at 24 h in newly transformed schistosomula and 5-week-old adult worms. Moreover, this gene was highly expressed in the testes of mature male worms compared to the rest of the parasite body. In in vitro schistosome cultures, treatment with GSK-J4 produced striking effects on schistosomula mortality and adult worm motility and mortality, as well as egg oviposition, in a dose- and time-dependent manner. Unexpectedly, western blot assays did not demonstrate overall modulation of H3K27me3 levels in response to GSK-J4. Confocal and scanning electron microscopy revealed the loss of original features in muscle fibers and alterations in cell-cell contact following GSK-J4 treatment.ConclusionsGSK-J4 presents promising potential for antischistosomal control; however, the underlying mechanisms warrant further investigation.
Highlights
Schistosomiasis chemotherapy is largely based on praziquantel (PZQ)
Our results indicated that schistosomula viability was significantly impaired as early as 24 h
To test our working hypothesis that the compound was killing schistosome through the inhibition of Smp_034000, which could interfere with gene expression during the life-cycle, we evaluated the overall methylation levels of H3K27me3 in adult worms and in 3 h schistosomula cultivated for 24 h or 48 h in the presence of the GSK-J4 inhibitor
Summary
Schistosomiasis chemotherapy is largely based on praziquantel (PZQ). PZQ is very safe and tolerable, it does not prevent reinfection and emerging resistance is a primary concern. Recent studies have shown that the targeting of epigenetic machinery in Schistosoma mansoni may result in severe alterations in parasite devel‐ opment, leading to death This new route for drug discovery in schistosomiasis has focused on classes of histone deacetylases (HDACs) and histone acetyltransferases (HATs) as epigenetic drug targets. A “piggy-backing” strategy can be applied to focus on drug targets already validated in other human diseases for which chemical probes are available. This approach offers potential timesaving and cost benefits in the context of NTDs, which face investment constraints in relation to drug discovery. A chemogenomic screening pipeline pinpointed some schistosome proteins upon which existing drugs may act against, including classes of lipid metabolism, G protein-coupled receptors (GPCRs), ligand- and voltage-gated ion channels, kinases, proteases and neuropeptides [6, 7], of which some have been validated [8, 9]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.