Abstract

Combinations of antiretroviral drugs are successfully used for the treatment of acquired immune deficiency syndrome and reduce the incidence of severe human immunodeficiency virus (HIV)-associated dementia. To test whether such drugs affect the GSH metabolism of brain cells, we have exposed astrocyte-rich primary cultures to various antiretroviral compounds. Treatment of the cultures with the protease inhibitors indinavir or nelfinavir in low micromolar concentrations resulted in a time- and concentration-dependent depletion of cellular GSH from viable cells which was accompanied by a matching increase in the extracellular GSH content. In contrast, the reverse transcriptase inhibitors zidovudine, lamivudine, efavirenz or nevirapine did not alter cellular or extracellular GSH levels. Removal of indinavir from the medium by washing the cells terminated the stimulated GSH export immediately, while the nelfinavir-induced accelerated GSH export was maintained even after removal of nelfinavir. The stimulation of the GSH export from viable astrocytes by indinavir or nelfinavir was completely prevented by the application of MK571, an inhibitor of the multidrug resistance protein 1. These data demonstrate that indinavir and nelfinavir stimulate multidrug resistance protein 1-mediated GSH export from viable astrocytes and suggest that treatment of patients with such inhibitors may affect the GSH homeostasis in brain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call