Abstract

The human protein apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like-3G (APOBEC3G), also known as CEM-15, mediates a newly described form of innate resistance to retroviral infection by catalyzing the deamination of deoxycytidine to deoxyuridine in viral cDNA replication intermediates. Because DNA deamination takes place after virus entry into target cells, APOBEC3G function is dependent on its association with the viral nucleoprotein complexes that synthesize cDNA and must therefore be incorporated into virions as they assemble in infected cells. Here we show that the HIV-1 virion infectivity factor (Vif) protein protects the virus from APOBEC3G-mediated inactivation by preventing its incorporation into progeny virions, thus allowing the ensuing infection to proceed without DNA deamination. In addition to helping exclude APOBEC3G from nascent virions, Vif also removes APOBEC3G from virus-producing cells by inducing its ubiquitination and subsequent degradation by the proteasome. Our findings indicate that pharmacologic strategies aimed at stabilizing APOBEC3G in HIV-1 infected cells should be explored as potential HIV/AIDS therapeutics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.