Abstract

BackgroundMast cells (MCs) mediate a key role in allergic diseases. Detailed studies of how the neuroleptic drug pimozide affects MC activity are lacking. The aim of this study was to investigate pimozide inhibition of immunoglobulin E (IgE)-mediated MC activation and MC-mediated allergic responses. MethodMCs were stimulated with anti-dinitrophenyl (DNP) IgE antibodies and DNP-horse serum albumin (HSA) antigen (Ag), and anti-allergic pimozide effects were detected by measuring β-hexosaminidase levels. Morphological changes were observed histologically. In vivo pimozide effects were assessed in passive cutaneous anaphylaxis (PCA) and ovalbumin (OVA)-sensitized active systemic anaphylaxis mouse (ASA) model experiments. Levels of phosphorylated (p-) SYK (spleen tyrosine kinase) and MAPKs (mitogen-activated protein kinases) were detected in western blots. ResultsWe found that pimozide inhibited MC degranulation, reduced MC release of β-hexosaminidase dose-dependently in activated RBL-2H3 (IC50: 13.52 μM) and bone marrow derived MC (BMMC) (IC50: 42.42 μM), and reduced MC morphological changes. The IgE/Ag-induced migration effect was suppressed by pimozide treatment dose-dependently. Pimozide down-regulated IgE/Ag-induced phosphorylation of SYK and MAPKs in activated MCs. Moreover, pimozide attenuated allergic reactions in PCA and ASA model mice, and decreased MC populations among splenic cells. ConclusionsThe antipsychotic drug pimozide can suppress IgE-mediated MC activation in vitro and in vivo and should be considered for repurposing to suppress MC-mediated diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call