Abstract

The mammalian target of rapamycin (mTOR) is a critical signaling hub for sustaining cancer survival. Targeting mTOR and inducing autophagic cell death downstream of it represent promising therapeutic strategies for cancer prevention. A US Food and Drug Administration-approved drug library containing 616 small molecules is used to screen anticancer drugs against colorectal cancer (CRC) cells that rely on mTOR. This led to the identification of an antipsychotic drug aripiprazole, which significantly induced mTOR inhibition and autophagic apoptosis in CRC, in vitro and in vivo. The use of drug affinity response target stability identified lysosome-associated membrane protein 2A (LAMP2a) as a direct target of aripiprazole. LAMP2a-deficient CRC cells are refractory to aripiprazole. High LAMP2a expression is associated with poor survival of patients with CRC and negatively correlated with expression of ribonuclease inhibitor 1 (RNH1), which is later confirmed as a novel substrate of LAMP2a. Mechanistically, aripiprazole bound to the Lys401-His404 of LAMP2a and repressed its activity, subsequently inactivating RNH1/miR-99a/mTOR signaling and inducing autophagy-mediated apoptosis, thereby suppressing tumorigenesis. Liposome-mediated delivery of aripiprazole in combination with fluorouracil elicited superior therapeutic benefits in CRC, as compared to single treatments, thereby highlighting that aripiprazole may be repurposed as a novel therapeutic agent for CRC treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.