Abstract

Crotalicidin (Ctn), a cathelicidin-related antimicrobial peptide from the South American rattlesnake venom gland, and its C-terminal Ctn[15-34] fragment, have exhibited important activities against micro-organisms, trypanosomatid protozoa and certain lines of tumour cells. Herein, the activity against clinical strains of fluconazole-resistant Candida albicans and of amphotericin B and fluconazole-resistant Cryptococcus neoformans was investigated. Microdilution and luminescent cell viability tests were used to evaluate and compare the susceptibility of pathogenic yeasts to these peptides. The time-kill curves of the most active Ctn[15-34] alone or in combination with fluconazole against drug-resistant yeasts were determined. Concomitantly, the fungicidal and/or fungistatic effects of Ctn[15-34] were visualized by the spotting test. The peptides were active against all strains, including those resistant to antifungal agents. The association of fluconazole with both Ctn and Ctn[15-34], although not synergic, was additive. In contrast, such pattern was not observed for C. neoformans. Overall, Ctn and Ctn[15-34] are potential antifungal leads displaying anti-yeast activities against clinical isolates endowed with drug resistance mechanisms. The effective peptide activity against resistant strains of pathogenic yeasts demonstrates that crotalicidin-derived peptides are promising templates to develop new antifungal pharmaceuticals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.