Abstract
Cladosporols are secondary metabolites from Cladosporium tenuissimum characterized for their ability to control cell proliferation. We previously showed that cladosporol A inhibits proliferation of human colon cancer cells through a PPARγ-mediated modulation of gene expression. In this work, we investigated cladosporol B, an oxidate form of cladosporol A, and demonstrate that it is more efficient in inhibiting HT-29 cell proliferation due to a robust G0/G1-phase arrest and p21waf1/cip1 overexpression. Cladosporol B acts as a PPARγ partial agonist with lower affinity and reduced transactivation potential in transient transfections as compared to the full agonists cladosporol A and rosiglitazone. Site-specific PPARγ mutants and surface plasmon resonance (SPR) experiments confirm these conclusions. Cladosporol B in addition displays a sustained proapoptotic activity also validated by p21waf1/cip1 expression analysis in the presence of the selective PPARγ inhibitor GW9662. In the DMSO/H2O system, cladosporols A and B are unstable and convert to the ring-opened compounds 2A and 2B. Finally, docking experiments provide the structural basis for full and partial PPARγ agonism of 2A and 2B, respectively. In summary, we report here, for the first time, the structural characteristics of the binding of cladosporols, two natural molecules, to PPARγ. The binding of compound 2B is endowed with a lower transactivation potential, higher antiproliferative and proapoptotic activity than the two full agonists as compound 2A and rosiglitazone (RGZ).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.