Abstract

In this study, the antioxidative fraction of white mulberry (Morus alba) was found to have an apotogenic effect on Ehrlich’s ascites carcinoma cell-induced mice (EAC mice) that correlate with upregulated p53 and downregulated NFκB signaling. The antioxidant activities and polyphenolic contents of various mulberry fractions were evaluated by spectrophotometry and the ethyl acetate fraction (EAF) was selected for further analysis. Strikingly, the EAF caused 70.20% tumor growth inhibition with S-phase cell cycle arrest, normalized blood parameters including red/white blood cell counts and suppressed the tumor weight of EAC mice compared with untreated controls. Fluorescence microscopy analysis of EAF-treated EAC cells revealed DNA fragmentation, cell shrinkage, and plasma membrane blebbing. These characteristic morphological features of apoptosis influenced us to further investigate pro- and anti-apoptotic signals in EAF-treated EAC mice. Interestingly, apoptosis correlated with the upregulation of p53 and its target genes PARP-1 and Bax, and also with the down-regulation of NFκB and its target genes Bcl-2 and Bcl-xL. Our results suggest that the tumor- suppressive effect of the antioxidative fraction of white mulberry is likely due to apoptosis mediated by p53 and NFκB signaling.

Highlights

  • Apoptosis is the process of programmed cell death, which plays critical roles in a wide variety of physiological processes during fetal development as well as in adult tissues [1]

  • Significant (p < 0.01) antioxidant activity of ethyl acetate fraction (EAF) was detected compared to the other extractives and the CA control

  • As it is well recognized that various genes play crucial roles in programmed cell death, we examined whether or not EAF affected the expression of pro-apoptotic genes like p53, PARP-1, and Bax and/or the expression of anti-apoptotic genes like NFκB, Bcl-2, and Bcl-xL

Read more

Summary

Introduction

Apoptosis is the process of programmed cell death, which plays critical roles in a wide variety of physiological processes during fetal development as well as in adult tissues [1]. Apoptosis occurs through regulation of different types of pro-apoptotic (e.g. Bax, Bak, Bad) and anti-apoptotic (e.g. Bcl-2, Bcl-xL) genes [2]. Hanahan and Weinberg reported that the apoptotic trigger is initiated when pro- and anti-apoptotic genes are balanced, while imbalance allows proliferating cells to form cancer [3]. During cancer formation, expression of antiapoptotic genes is upregulated, whereas pro-apoptotic genes are downregulated. PLOS ONE | DOI:10.1371/journal.pone.0167536 December 9, 2016

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.