Abstract

Resveratrol (RSV) is a natural polyphenolic antioxidant with a proven protective role in several human diseases involving oxidative stress, although the molecular mechanism underlying this effect remains unclear. The present work tried to elucidate the molecular mechanism of RSV's role on signal transduction modulation. Our biochemical analysis, including radioligand binding, real time PCR, western blotting and adenylyl cyclase activity, and computational studies provide insights into the RSV binding pathway, kinetics and the most favored binding pose involving adenosine receptors, mainly A2A subtype. In this study, we show that RSV target adenosine receptors (AdoRs), affecting gene expression, receptor levels, and the downstream adenylyl cyclase (AC)/PKA pathway. Our data demonstrate that RSV activates AdoRs. Moreover, RSV activate A2A receptors by directly binding to the classical orthosteric binding site. Intriguingly, RSV-induced receptor activation can stimulate or inhibit AC activity depending on concentration and exposure time. Such subtle and multifaceted regulation of the AdoRs/AC/PKA pathway might contribute to the protective role of RSV. Our findings suggest that RSV molecular action is mediated, at least in part, by activation of adenosine receptors and create the opportunity to interrogate the therapeutic use of RSV in pathological conditions involving AdoRs, such as Alzheimer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.