Abstract

Previous studies have shown isoflavone aglycones to have more biological effects than their counterparts, isoflavone glycones. Some β-glucosidases can hydrolyze isoflavone glucosides to release aglycones, and discovery of these has attracted great interest. A glycoside hydrolase (GH) family 3 β-glucosidase (bgl2) gene from Neurospora crassa was heterologously expressed in Pichia pastoris with high purity. The recombinant BGL2 enzyme displayed its highest activity at pH 5.0 and 60 °C, and had its maximum activity against p-nitrophenyl-β-d-glucopyranoside (pNPG) (143.27 ± 4.79 U/mg), followed by cellobiose (74.99 ± 0.78 U/mg), gentiobiose (47.55 ± 0.15 U/mg), p-nitrophenyl-β-d-cellobioside (pNPC) (40.07 ± 0.87 U/mg), cellotriose (12.31 ± 0.36 U/mg) and cellotetraose (9.04 ± 0.14 U/mg). The kinetic parameters of Km and Vmax were 0.21 ± 0.01 mM and 147.93 ± 2.77 μM/mg/min for pNPG. The purified enzyme showed a heightened ability to convert the major soybean isoflavone glycosides (daidzin, genistin and glycitin) into their corresponding aglycone forms (daidzien, genistein and glycitein). With this activity against soybean isoflavone glycosides, BGL2 shows great potential for applications in the food, animal feed, and pharmaceutical industries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call