Abstract

Rheumatoid arthritis (RA) is one of the inflammatory kinds of arthritis in the clinical situation, and cytosolic Ca2+ overload has been proposed as one of the primary factors for many inflammatory cells activation, which lead to relative enzymes and inflammatory factors release. It is therefore accepted that Ca2+ channel blockers can protect joint injury from inflammation. In the present study we investigated the possible molecular mechanism of the antinociceptive efficacy of HWTX-I, a spider peptide toxin blocking Ca2+ channels, on the rat rheumatoid arthritis model. Our study demonstrates that HWTX-I can relieve pain in the inflammatory joints and eliminate arthrocele to some degree. Moreover, HWTX-I can also decrease the concentration of tumour necrosis factor α (TNF-α) and increase the concentration of interleukin 4(IL-4) and interleukin 10(IL-10) in rat's serum. HWTX-I can also decrease the mRNA expression level of related factors of TNF-α, interleukin 1β (IL-1β) and interleukin 6(IL-6) in inflammatory pathways in rheumatoid arthritis. Therefore, the present results show that the epidural administration of HWTX-I is effective in antinociception in the rat model of rheumatoid arthritis, which may act through its inhibition on certain inflammatory pathways.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call