Abstract

The antineoplastic drug estramustine is an adduct of estradiol and nor-nitrogen mustard. It has been shown that this drug interferes with microtubule assembly, an effect mediated by estramustine interaction with microtubule-associated proteins (MAPs). In the present report we demonstrate that estramustine and the phosphorylated derivative of the drug, estramustine-phosphate, inhibit the secretion of interleukin-3 by WEHI-3B cells. These studies also show that the estramustine derivative specifically interacts with a MAPs component found in these cells, which exhibited characteristics ressembling those of tau protein isoforms. Western blots using a unique monoclonal antibody MTB6.22 that recognizes microtubule-binding domains on MAPs, indicated that this WEHI protein factor contained the antigenic determinant that are functionally significant for microtubule assembly. ELISA assays using this antibody, also showed a decrease in the levels of the immunoreactive protein in WEHI cells after treatment with EMP. Interestingly, it has been recently described that the action of estramustine-phosphate is mediated by a direct interaction with MAP-binding sites on the microtubule surface, which are recognized by the site-specific monoclonal antibody. These findings together with immuno-precipitation experiments using anti-interleukin-3 antibodies and the inhibitory effect of the estramustine derivative on WEHI secretion process suggest that this anti-mitotic agent may block IL-3 secretion by a mechanism involving its interaction with a 'tau-like' MAPs component present in these cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.