Abstract

Asthma is an inflammatory disease that is characterized by a predominance of eosinophils and/or neutrophils in the airways. In the resolution of inflammation, lipid mediators such as resolvin D1 (RvD1) and its epimer aspirin-triggered RvD1 (AT-RvD1) are produced and demonstrate anti-inflammatory and pro-resolution effects. In experimental models such as airway allergic inflammation induced by ovalbumin in mice, RvD1 and AT-RvD1 alleviate some of the most important phenotypes of asthma. Here, we demonstrated the effects of AT-RvD1 on peripheral blood mononuclear cells (PBMCs) from healthy individuals and patients with severe asthma stimulated with lipopolysaccharide (LPS) or Dermatophagoides pteronyssinus (DM). AT-RvD1 (100nM) reduced the concentration of TNF-α in PBMCs from healthy individuals and patients with severe asthma stimulated with LPS or DM. In addition, AT-RvD1 lowered the production of IL-10 only in PBMCs from patients with severe asthma stimulated with LPS. These effects were associated in part with decreasing NF-κB activation. Moreover, AT-RvD1 significantly increased phagocytosis of apoptotic neutrophils by monocytes from patients with severe asthma. In conclusion, AT-RvD1 demonstrated both anti-inflammatory and pro-resolution effects in PBMCs from patients with severe asthma and could become in the future an alternative treatment for asthma.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call