Abstract

Carvacrol (5-Isopropyl-2-methylphenol), a volatile oil constituent, mainly exists in Labiaceae family plants. Carvacrol has long been studied for its natural antifungal potential and food preservative potential. However, its exact mode of action, especially against Penicillium digitatum (P. digitatum), remains unexplored. Herein, a 1H-NMR-based metabolomic technique was used to investigate the antifungal mechanism of carvacrol against P. digitatum. The metabolomic profiling data showed that alanine, aspartate, glutamate, and glutathione metabolism were imbalanced in the fungal hyphae. A strong positive correlation was seen between aspartate, glutamate, alanine, and glutamine, with a negative correlation among glutathione and lactate. These metabolic changes revealed that carvacrol-induced oxidative stress had disturbed the energy production and amino acid metabolism of P. digitatum. The current study will improve the understanding of the metabolic changes posed by plant-based fungicides in order to control citrus fruit green mold caused by P. digitatum. Moreover, the study will provide a certain experimental and theoretical basis for the development of novel citrus fruit preservatives.

Highlights

  • Rotting of fruits and vegetables have been a frequent and serious problem for thousands of years

  • The inhibitory effect of carvacrol on the growth of P. digitatum was quite obvious and a significant growth inhibition on potato dextrose agar (PDA) medium was seen in a dose-dependent manner (p < 0.05) (Figure 1)

  • Over one-fifth of the P. digitatum mycelial growth was inhibited at 0.0625 mg/mL of carvacrol, but 0.125 mg/mL concentration inhibited more than half (54.84%) of the mycelial growth

Read more

Summary

Introduction

Rotting of fruits and vegetables have been a frequent and serious problem for thousands of years. The citrus yield loss reaches up to 25%, with developing countries facing almost double this yield loss of citrus crop. This yield loss is causing serious annual economic losses and creating hurdles for the development of the citrus fruits-related industry [1]. Citrus fruits (Family Rutaceae, subfamily Aurantioideae) are highly susceptible to decay caused by more than 20 postharvest fungal infections leading, to approximately half the crop wasted due to fungal diseases [2]. The P. digitatum infects the citrus fruits, causes green mold disease, and generates huge (60–80%) yield losses under ambient conditions [4]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.