Abstract
The cellobiose lipid of Cryptococcus humicola, 16-(tetra-O-acetyl-β-cellobiosyloxy)-2-hydroxyhexadecanoic acid, is a natural fungicide. Sensitivity of the cells of Saccharomyces cerevisiae to the fungicide depends on a carbon source. Cellobiose lipid concentrations inducing the leakage of potassium ions and ATP were similar for the cells grown in the medium with glucose and ethanol. However, the cells grown on glucose and ethanol died at 0.05 mg ml-1 and 0.2 mg ml-1 cellobiose lipid, respectively. Inorganic polyphosphate (PolyP) synthesis was 65% of the control with 0.05 mg ml-1 cellobiose lipid during cultivation on ethanol. PolyP synthesis was not observed during the cultivation on glucose at the same cellobiose lipid concentration. The content of longer-chain polyP was higher during cultivation on ethanol. We speculate the long-chained polyP participate in the viability restoring of ethanol-grown cells after treatment with the cellobiose lipid.
Highlights
Some yeasts and mycelial fungi produce glycolipids of various types such as mannosylerythritols, sophorolipids, and cellobiose lipids
The mechanism of action of cellobiose lipids on yeast cells is based on enhancement of nonspecific permeability of the cytoplasmic membrane, which results in the rapid leakage of ATP and potassium ions from the yeast cells treated with these compounds (Kulakovskaya et al 2005, 2008)
The objective of this work was to compare the sensitivity of S. cerevisiae cells grown on glucose and ethanol to the fungicide 16-(tetra-O-acetyl-β-cellobiosyloxy)-2hydroxyhexadecanoic acid secreted by Сryptococcus humicola (Kulakovskaya et al 2009; Morita et al 2011)
Summary
Some yeasts and mycelial fungi produce glycolipids of various types such as mannosylerythritols, sophorolipids, and cellobiose lipids. They possess multiple biological activities: they act as biosurfactants, facilitate dissolution and consumption of organic hydrophobic compounds, and display fungicidal activity (Kitamoto et al 2002; Cameotra and Makkar 2004; Golubev 2006; Rodrigues et al 2007). The intercalation of glycolipid of Cr. humicola into liposomes containing diphytanoylphosphatidylcholine, ergosterol, and phosphatydilserine was demonstrated (Puchkov et al 2002) These data suggest that the mycocidal effect of cellobiose lipids is associated with its detergent-like properties. Based on these observations and on the electrical measurements on planar phospholipid bilayers, which showed glycolipid-induced membrane permeabilization, it was suggested that the cytoplasmic membrane is the primary target of cellobiose lipid activity (Puchkov et al 2002)
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.