Abstract

Ketoconazole (KET), a synthetic imidazole broad-spectrum antifungal agent, is characterized by its poor aqueous solubility and high molecular weight, which might hamper its corneal permeation. The aim was to develop an ophthalmic formulation loaded with optimized trans-ethosomal vesicles to enhance KET ocular permeation, antifungal activity, rapid drug drainage, and short elimination half-life. Four formulation factors affecting the vesicles’ size, zeta potential, entrapment efficiency, and flexibility of the trans-ethosomes formulations were optimized. The optimum formulation was characterized, and their morphological and antifungal activity were studied. Different ophthalmic formulations loaded with the optimized vesicles were prepared and characterized. The ocular irritation and in vivo corneal permeation were investigated. Results revealed that the drug-to-phospholipid-molar ratio, the percentage of edge activator, the percentage of ethanol, and the percentage of stearyl amine significantly affect the characteristics of the vesicles. The optimized vesicles were spherical and showed an average size of 151.34 ± 8.73 nm, a zeta potential value of +34.82 ± 2.64 mV, an entrapment efficiency of 94.97 ± 5.41%, and flexibility of 95.44 ± 4.33%. The antifungal activity of KET was significantly improved following treatment with the optimized vesicles. The developed in situ gel formulations were found to be nonirritating to the cornea. The trans-ethosomes vesicles were able to penetrate deeper into the posterior eye segment without any toxic effects. Accordingly, the in situ developed gel formulation loaded with KET trans-ethosomes vesicles represents a promising ocular delivery system for the treatment of deep fungal eye infections.

Highlights

  • Various microorganisms such as bacteria, amoeba, viruses, and fungi can cause eye infections

  • The prepared nanovesicles were characterized for size, polydispersity index (PDI), zeta potential, entrapment efficiency, and flexibility

  • PDI of the prepared vesicles was in the range of 0.463 ± 0.05 to 0.692 ± 0.05, which was an indication of nanovesicles’

Read more

Summary

Introduction

Various microorganisms such as bacteria, amoeba, viruses, and fungi can cause eye infections. Many different types of fungi such as fusarium, aspergillus, cryptococcus, histoplasma, zygomycetes, and candida may cause ocular infection. These fungi are widely spread and can live in soil, plants, indoor and outdoor environments, or even on the human skin and body mucous membranes. They can affect and cause serious damage to many parts of the eye such as the eyelid (eyelid nodules), conjunctiva (conjunctivitis), cornea (keratitis), choroid (choroiditis), retina (retinitis), the inside vitreous and/or aqueous humor (endophthalmitis), and the optic nerve (optic neuropathy) [1].

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call