Abstract

Numerous studies indicate the potential antidepressant actions of several mGlu5 receptor antagonists, including 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]-pyridine (MTEP). The explanation for the mechanism of these effects might be a key step in finding new antidepressant drugs (AD). The aim of the present study was to investigate the possible role of the serotonergic system in the antidepressant-like activity of MTEP in the tail suspension test (TST) in C57BL/6J mice, using selected antagonists of serotonergic receptors and by applying two different methods of serotonin (5-HT) depletion. The results of our studies showed that the mGlu5 receptor antagonist, MTEP, similar to the fluoxetine used as reference AD, did not induce antidepressant-like effects in mice pretreated with tryptophan hydroxylase inhibitor, parachlorophenylalanine. On the other hand, MTEP worked as a potential AD in the TST in mice fed on a tryptophan-free (TRP-free) diet for 3 weeks. However, fluoxetine, which was used as a reference control was also active in this experiment, suggesting that a TRP-free diet was not sufficiently effective in reducing the 5-HT level. Furthermore, we showed that the 5HT2A/2C antagonist, ritanserin, yet not the 5-HT1A antagonist, WAY100635, 5HT1B antagonist, SB224289 or 5HT4 antagonist, GR125487, reversed the antidepressant-like effects of MTEP in the TST. Finally, a sub-effective dose ofMTEP coadministered with a sub-effective dose of citalopram induced an antidepressant-like effect in the TST in mice. The results of our studies suggest the involvement of serotonergic system activation in the antidepressant-like effects of the mGlu5 antagonist, MTEP, in the TST in mice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call